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Step-Growth Polymerizations 

 

1. The	Carothers	Equation	

Step-growth	polymerizations	proceed	via	the	covalent	coupling	of	monomers	with	two	(or	sometimes	
more)	 complementary	 functional	 groups	A	and	B.	Typical	organic	 chemistry	base	 reactions,	 such	as	
esterification,	amidation,	or	urethane	formation,	are	typically	applied	in	this	context.	Most	common	is	a	
reaction	between	two	different	bifunctional	monomers	A–A	and	B–B,	each	comprising	two	functional	
groups	 of	 type	 A	 and	 B,	 respectively.	 The	 difunctional	 nature	 of	 these	 monomers	 leads,	 first,	 to	
oligomeric	species	bearing	unreacted	A	and	B	end	groups	that	continue	to	react	with	one	another	in	a	
stochastic	manner,	ultimately	resulting	in	a	polymer	with	a	characteristic	distribution	of	the	molar	mass.	

The	 Carothers	 equation	 relates	 the	 number-average	 degree	 of	 polymerization	 with	 the	
conversion	of	functional	groups	and	their	stoichiometric	ratio	and	allows	to	rationalize	that	high	
molecular	weight	polymers	are	only	observed	if	the	polymerization	reaction	is	driven	close	to	
complete	functional	group	conversion.		

In	a	step-growth	polymerization	of	bifunctional	monomers	A–A	and	B–B,	the	stoichiometric	ratio,	r,	is	
the	ratio	between	the	initial	number	of	A	groups,	𝑁!,#,	and	B	groups,	𝑁$,#.	By	convention,	the	A	groups	
are	defined	to	be	the	“limiting”	type	of	groups,	i.e.,	the	type	of	groups	that	is	present	in	lower	amount,	
so	that	r	≤	1.		

	 𝑟 =
𝑁!,#
𝑁$,#

		.	 (1)	

Hence,	the	initial	number	of	groups	B	can	be	expressed	in	terms	of	the	initial	number	of	groups	A:	

	 𝑁$,# =
𝑁!,#
𝑟
		.	 (2)	

As	the	molecular	weight	of	a	step-growth	polymer	continuously	increases	with	every	coupling	reaction	
between	functional	groups,	 it	 is	helpful	to	define	the	conversion,	p,	as	the	fraction	of	the	functional	
groups	A	that	has	reacted	(with	functional	groups	B)	at	a	given	time	t.	The	total	number	of	functional	A	
units	present	at	time	t,	NA,t,	can	hence	be	expressed	as	

	 𝑁!,% = 𝑁!,# − 𝑝𝑁!,# = 𝑁!,#(1 − 𝑝)		,	 (3)	

where	NA,0	is	the	initial	amount	of	groups	A	at	time	t	=	0.	By	definition,	each	reacted	functional	group	
A	must	have	exactly	reacted	with	one	functional	group	B:	if	𝑝𝑁!,#	groups	A	have	reacted,	the	same	
number	𝑝𝑁!,#	of	groups	B	must	have	reacted.	The	number	of	groups	B	at	time	t	is	therefore	(the	indices	
are	not	a	mistake!):	
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	 𝑁$,% = 𝑁$,# − 𝑝𝑁!,# = 𝑁$,# − 𝑟𝑝𝑁$,# = 𝑁$,#(1 − 𝑟𝑝)		,	 (4)	

or,	expressed	in	terms	of	groups	A:	

	 𝑁$,% = 𝑁$,# − 𝑝𝑁!,# =
𝑁!,#
𝑟

− 𝑝𝑁!,# = 𝑁!,# ,
1
𝑟
− 𝑝-		.	 (5)	

The	total	number	of	initially	present	monomer	molecules,	N0,	is	given	by	the	total	number	of	functional	
groups	divided	by	two,	which	accounts	for	the	fact	that	the	molecules	are	difunctional:	

	 𝑁# =
𝑁&,# +𝑁',#

2
=
𝑁&,# 01 +

1
𝑟1

2
		.	 (6)	

Each	growing	polymer	chain	has	exactly	two	end	groups	of	either	group	A	or	B.	The	total	number	of	
polymer	 chains,	N,	 is	 therefore	 given	 by	 the	 sum	of	 the	 total	 number	 of	 unreacted	A	 and	B	 groups	
divided	by	two,	which	can	be	expressed	as	a	function	of	the	respective	starting	amounts	of	A	and	B	
groups,	NA,0	and	NB,0:	

	 𝑁 =
𝑁! +𝑁"

2 =
𝑁!,$(1 − 𝑝) + 𝑁",$(1 − 𝑟𝑝)

2 =
𝑁!,$(1 − 𝑝) +

𝑁!,$
𝑟 (1 − 𝑟𝑝)

2 =
𝑁!,$
2 +1 − 2𝑝 +

1
𝑟,		.	

(7)	

The	number-average	degree	of	polymerization,	𝑋3(,	which	 is	 the	average	number	of	repeat	units	per	
chain,	can	hence	be	calculated	as	the	number	of	initially	present	molecules	divided	by	the	total	number	
of	present	polymer	chains,	which	results	in	the	general	form	of	the	Carothers	equation	

	 𝑋3( =
𝑁#
𝑁
=

1 + 𝑟
1 + 𝑟 − 2𝑟𝑝

		.	 (8)	

The	 Carothers	 equation	 can	 be	 simplified	 for	 two	 kinds	 of	 boundary	 conditions.	 On	 one	 side,	 for	
perfectly	stoichiometric	conditions	(r	=	1),	Equation	8	becomes	

	 𝑋3( =
1

1 − 𝑝
		.	 (9)	

In	this	case,	the	number-average	degree	of	polymerization,	𝑋3(	is	a	hyperbolic	function	of	conversion	p,	
meaning	that	functional	group	conversions	close	to	unity	are	required	to	obtain	high-molecular	
weight	 polymers.	 On	 the	 other	 side,	 even	 in	 the	 hypothetical	 case	 of	 complete	 functional	 group	
conversion	(p	=	1),	any	deviation	from	perfectly	stoichiometric	conditions	results	in	a	significant	
reduction	of	the	degree	of	polymerization:	

	 𝑋3( =
1 + 𝑟
1 − 𝑟

		.	 (10)	

Moreover,	Equations	8	and	9	also	imply	that	it	is	difficult	to	obtain	linear	polymers	with	high	
average	molar	masses	by	step	growth	polymerization	in	the	laboratory,	and	even	those	obtained	
by	industrial	processes	rarely	exceed	100,000	g/mol,	depending	on	the	monomer.	
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2. Molar	Mass	Distribution	in	Step-Growth	Polymerizations	

In	order	to	derive	the	“most	probable”	molar	mass	distribution	for	step-growth	polymerizations	(which	
is	valid	for	both	the	polymerization	of	a	stoichiometric	A-A/B-B	system	and	A-B-type	monomers),	an	
equal	reactivity	of	the	functional	groups	throughout	the	polymerization	is	usually	assumed,	that	is,	the	
reactivity	of	 functional	groups	 is	 independent	on	 the	molar	mass	of	 the	growing	polymer	chain.	For	
many	step-growth	polymerization	this	has	indeed	proven	to	be	a	reasonable	assumption	and	allows	one	
to	perform	some	simple	statistical	considerations	leading	to	an	expression	for	the	Flory-Schulz	molar	
mass	distribution	function.	

In	a	system	initially	containing	N0	difunctional	monomers	whose	two	functional	groups	can	react	with	
one	another	(assuming	that	ring	formation	is	negligible),	the	probability	that	one	such	coupling	reaction	
has	occurred	 is	 then	equivalent	 to	 the	conversion	p.	The	probability	 that	a	 functional	group	has	not	
reacted	is,	accordingly,	1	–	p.	Thus,	the	probability	that	a	given	chain	contains	x	monomers	after	a	certain	
period	of	time,	 i.	e.,	 that	x	–	1	coupling	reactions	have	taken	place,	and	one	functional	group	remains	
unreacted	is	given	by	the	number-distribution	function	

	 𝑃) = 𝑝)*+(1 − 𝑝)		.	 (11)	

The	total	number	of	chains	in	the	system	is	

	 𝑁 = 𝑁#(1 − 𝑝)		,	 (12)	

as	 there	are	N0	molecules	at	 the	start.	Each	 time	one	end	of	one	of	 these	molecules	reacts,	 the	 total	
number	of	molecules	decreases	by	1.	So,	after	N0	p	 reactions,	 the	number	of	 remaining	molecules	 is	
N0	–	N0	p	=	N0	(1	–	p).	 This	 relationship	 is	 also	 reflected	 by	 the	 Carothers	 equation	 (compare	 with	
Equations	8	and	9).	The	number	of	chains	containing	x	repeat	units	is	accordingly	given	by	

	 𝑁) = 𝑁𝑃) = 𝑁𝑝)*+(1 − 𝑝) = 𝑁#𝑝)*+(1 − 𝑝),		.	 (13)	

The	weight	fraction	wx	of	the	molecules	containing	x	monomers	is	then	given	by	the	total	mass	mx	of	
molecules	with	a	degree	of	polymerization	x	divided	by	the	total	mass	of	all	molecules,	which	can	also	
be	expressed	in	terms	of	the	molar	mass	of	a	repeat	unit,	M0.	The	weight-distribution	function	can	
accordingly	be	expressed	as	

	 𝑤) =
𝑚)
∑𝑚)

=
𝑁)	(𝑥	𝑀#)
𝑁#	𝑀#

=
𝑥	𝑁)
𝑁#

= 𝑥(1 − 𝑝),𝑝)*+		,	 (14)	

which	is	usually	referred	to	as	the	most	probable	molar	mass	distribution	function	and	is	usually	
referred	 to	 as	 Flory-Schulz	 distribution	 in	 polymer	 science.	 The	 number	 fraction	 (Equation	 13)	
implies	 that,	even	 in	high	molar	mass	polymers,	shorter	polymer	chains	remain	 favored	over	 longer	
ones	in	terms	of	the	number	fraction,	and	the	monomer	dominates	over	any	other	chain	length	for	any	
conversion.	However,	since	the	molar	mass	of	monomers	and	shorter	chains	is	lower	than	that	of	longer	
chains,	the	corresponding	weight	fraction,	wx,	displays	a	maximum	that	shifts	towards	higher	degrees	
of	polymerization	as	the	conversion	increases,	in	line	with	the	Carothers	equation	(Equation	9).	
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3. Molar	Mass	Averages	and	Dispersity	

In	order	to	derive	an	expression	for	the	number-average	molar	mass,	𝑴; 𝒏,	defined	as	the	total	sample	
weight	over	the	total	number	of	molecules,	one	can	start	from	the	Flory-Schulz	distribution		

	 𝑀;( =
∑ 𝑥	𝑁)	𝑀#
.
)/+
∑ 𝑁).
)/+

= 𝑀#
∑ 𝑥	𝑁#	𝑝)*+	(1 − 𝑝),.
)/+
∑ 𝑁#	𝑝)*+	(1 − 𝑝),.
)/+

= 𝑀#
∑ 𝑥	𝑝)*+.
)/+
∑ 𝑝)*+.
)/+

			.	 (15)	

One	can	then	apply	Taylor	series	expansions	that	converge	to	known	solutions	for	p	<	1	(see	
Equations	 20	 to	 22,	 Appendix),	 for	 simplifying	 both	 numerator	 and	 denominator	 of	
Equation	15:	

	 𝑀;( = 𝑀0
∑ 𝑥	𝑝)*+.
)/+
∑ 𝑝)*+.
)/+

= 𝑀0

𝑑
𝑑𝑝∑ 𝑝).

1/#

(1 − 𝑝)*+
= 𝑀0

(1 − 𝑝)*,

(1 − 𝑝)*+
=

𝑀0

1 − 𝑝
		.	 (16)	

One	can	 find	an	analogous	solution	 for	 the	weight	average	molar	mass,	𝑀;2 ,	 starting	 from	the	Flory-
Schulz	distribution	

	 𝑀;2 =
∑ 𝑁)	𝑀)

,.
)/+

∑ 𝑁)	𝑀)
.
)/+

=
∑ 𝑁)	𝑥,	𝑀#

,.
)/+
∑ 𝑁)	𝑥	𝑀#
.
)/+

= 𝑀#
∑ 𝑁#	𝑝)*+	(1 − 𝑝),	𝑥,.
)/+
∑ 𝑁#	𝑝)*+	(1 − 𝑝),	𝑥.
)/+

= 𝑀#
∑ 𝑝)*+	𝑥,.
)/+
∑ 𝑝)*+	𝑥.
)/+

		.	 (17)	

Again	applying	Taylor	series	expansions	that	converge	to	known	solutions	for	p	<	1	(Equations	20,	22,	
and	23,	Appendix),	this	results	in	:	

	 𝑀;2 = 𝑀#
(1 + 𝑝)(1 − 𝑝)*4

(1 − 𝑝)*,
= 𝑀#

1 + 𝑝
1 − 𝑝

		.	 (18)	

For	the	dispersity	Đ,	it	therefore	follows	from	Equation	16	and	18	that	

	 Đ =
𝑀;2
𝑀;(

1 + 𝑝		.	 (19)	

In	 conclusion,	 the	 Carothers	 equation	 shows	 that	𝑴; 𝒏	 and	 𝑴; 𝒘	 become	 large	 only	 for	 a	
conversion	approaching	p	=	1.	At	the	same	time,	Equation	19	implies	that	the	dispersity	
tends	towards	Đ	=	2	within	this	limit,	which	is	hence	diagnostic	of	a	well-behaved	step	
growth	polymerization.	
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Appendix	

	

	

	 >𝑦)
.

)/#

= 1 + 𝑦 + 𝑦,… =	
1

1 − 𝑦
	 (20)	

	

	 >𝑦)*+
.

)/#

= 1 + 𝑦 + 𝑦,…+ 𝑦)*+ =
1
𝑦
A>𝑦) − 1
.

1/#

B =
1
𝑦 ,

1
1 − 𝑦

− 1- =
1

1 − 𝑦
	 (21)	

	

	 >𝑥𝑦)*+
.

)/#

= >
𝑑
𝑑𝑦

𝑦)
.

)/#

=
𝑑
𝑑𝑦

>𝑦)
.

)/#

=
𝑑
𝑑𝑦

1
1 − 𝑦

=
1

(1 − 𝑦),
	 (22)	

	

	
>𝑥,𝑦)*+
.

)/#

= 𝑦>𝑥,𝑦)*,
.

)/#

= 𝑦>𝑦)*,𝑥(𝑥 − 1) + 𝑦)*+𝑥
.

)/#

= 𝑦
𝑑,

𝑑𝑦,
1

1 − 𝑦
+
𝑑
𝑑𝑦

1
1 − 𝑦

=
2𝑦

(1 − 𝑦)4
+

1
(1 − 𝑦),

=
1 + 𝑦
(1 − 𝑦)4

	
(23)	

	

	

	


